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A Bayesian Vector Autoregression (BVAR) can be thought of either as a method of alleviating the burden of
the over-parameterisation usually associated with unrestricted VARs, or as a method of correcting
coelfficient bias when the time series are nonstationary. Monte Carlo evidence is provided to show that the
fatter appears to be a more important characteristic of BVARs in experiments using a four-equation
cointegrated system, and with that system embedded in a ten-equation mode! containing six extraneous
random walks. It is found that the BVAR model generally performs much better than a VAR in levels and is
a viable alternative to a vector error correction model. It is also found that estimating constant terms when
there is no drift in the data causes a major deterioration in forecasting performance.

i INTRODUCTION

For more than two decades, vector autoregressive
models  (VARs) have been used for
macroeconomic modelling and forecasting. The
original Litterman (1986) model contained six
variables, and six lags of each variable in each
equatien, making the dernands on data extreme.
This led Litterman to suggest that more accurate
forecasting  models might be produced by
combining the evidence contained in the data with
the Bayesian priors specifying each time series is
a random walk. The resuitant Bayesian VAR
(BVAR), based on Theil and Goldberger's (1961)
mixed estimation procedure, has become a
standard and successful method of forecasting
macroeconomic time series.

Although the 20 years that have elapsed since the
pioneering days of VAR modelling produced
significantly longer time series, the need for
"methods such as BVARSs to reduce the demands of
modelling  on  data have not diminished.
Researchers have begun to develop larger models
{Dungey and Pagan, 1999) and structural changes
otten prevent older data being used.

Recently, Abadir, Hadri and Tzvalis (1999)
demonstrated that the bias in parameter estimates
of VARs with I{i} data increases with the
inclusion of extraneous I(1) variables. As a result,
two major questions are posed for researchers.
Should one block-segment models to reduce this
parameter bias? Should the estimated number of
unit roots be imposed upon such models before
estimation?

Given that equations from classical econometric

models often contain only three or four variables
in an equation, it is reasonable to ask whether it is
better to build VARs with, say, 10 equations, or a
aumber of inter-linked VARs, each of only three
or four variables. Since any additional variables,
over and above those needed to capture the
macroeconomic transmission mechanism increase
the bias in the estimated coefficients, this is a
significant, and as yet, largely unexplored
question (Metin, 1995).

Clements and Hendry (1995) conducted a Monte
Carlo study and reported that if the true number of
unit roots is unknown, it is preferable to err on the
side of too many cointegrating equations rather
than too few, whilst Brandner and Kunst
concluded to the contrary.

The second purpose of this paper is to illuminate
this  Clements-Hendry and  Kunst-Brandner
contradiction. The forecasting performance of
Vector Error Correction (VEC) models based on
an estimated number of unit roots is compared ta
the extremes of a VAR in levels and a VAR in
differences (DVAR) and al! three are compared to
a BVAR specification.

Forecasts from VAR models with biased estimates
produce forecasts that are unconditionally
unbiased {Dufour, 1984) but this bias significantly
contributes to forecast mean squared error {mse)
and bias in a conditional sense. By directly
comparing the forecast performance of BVARs
with VECs in a Monte Carlo experiment, some
light can be shed on whether BVARs are as
successful as they are because of bias-correction or
parameter reduction.
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2. MONTE CARLO EXPERIMENT

The core of the data generating process {dgp) for
this experiment is a four-equation cointegrated
system with one commoen trend {when ld)i <1)

Vi = Yau T g, 1=1,23
Aya = (1 - GL)&‘A
(1 - ¢olYei = (1 - 61L& i=1,23

where each & is a normally and independently
distributed, mutually uncorrelated, zero mean,
unit variance disturbance term.

In a second dgp, the core mode! is augmented by
six extraneous and mutually uncorrelated random
walks. From Abadir et al., it is known that the
coefficient bins in unrestricted VARs increases
when such extraneous random waliks are included
so that a comparison of the results from these two
models goes part way to addressing the block-
segmentation question,

In order to focus on the small sample properties of
the estimators, the number of observations (T} is
set to 75, although the resulis of additional
experiments not reported here suggests that the
same conclusions are reached with 130
observations, albeit in a more muted sense.

Two values of ¢ are chosen to reflect no
cointegration (¢ :=1)1 and extreme cointegration
(¢ = 0). Similarly, two values of @ are used. When
g = 0, the true lag is one and, when 8 = 0.75, the
true lag length is infinite, but can reasonably be
approximated by & VAR(Z) or VAR(3) with T =
75. In each of the eight experiments, 5,000
replications were conducted,

Forecast accuracy is measured by the trace of the
forecast mse matrix for the four-equation model,
or that four-equation partition tor the ten-eguation
system. Thus, any deterioration in mse in the
presence of extraneous random walks is directly
attributable to their inclusion and not as a result of
the model's inability to predict the additional
variables.

Four basic variants of the model are estimated:

{a) the VEC mode! using both the Chao and
Phillips (1999} joint procedure, VEC(J), and the
more standard sequential procedure based on
using the BIC to select the lag iength, and
Johansen and Juselius's (1990) maximum root test

to select the number of common trends using a
sequence of 5% tests, VEC(S),

{b) a VAR using BIC to select the lag length.

{c) a DVAR using BIC to select the lag length.

{d) Two BYARs, each using AIC to select the lag
length, but with either the standard Minnesota
priors (with hyperparameters of 0.2 for the
diagonal and 0.2 for the off-diagonal terms),
BVAR(M), or with looser priors on the off-
diagonal (off-diagonal hyperparameter = 0.8),
BVAR(L).

Fach estimated mode! contained a constant term
aithough none was present in the dgp. All of the
models are compared to a no-change model which
happens to be the correct model when ¢ = | and 8
=, The mse's were computed for one-step ahead
and ten-steps ahead.

3. FORECAST ACCURALCY

One result, which is not reported, was particularly
clear. Initially, each of the models was also
gstimated with an arbitrary lag length of four
{Muscatelli and Hurn, 1992). There was extremely
strong support for using an information criterion
to select the lag length over arbitrarily setting it to
four in both VAR and DVAR variants. [n some
cases the mse more than halved when the lag
length was estimated. Since the BVAR method is
designed to be less susceptible to mefficiency due
to  over-specifying the lag length, AIC was
preferred to BIC for choosing the lag length for
that variant. There was also no support for
arbitrarily setting the lag length to four in this
case. Thus, ne further account will be taken of the
popular, but arbitrary, procedure of not estimating,
but imposing, the lag length,

The results of the mse forecast comparison are
presented in Table 1. There is no clear ranking
between the joint and sequential procedures for
determining the number of common trends. 1t 1s
known tfrom Bewley and Yang {19935, 1998) that
the case of mutually uncorrelated residuals {ei)
used here is the worst case for the power of the
Johansen test and it is dominated by the Bewley-
Yang test in that part of the parameter space.
Furthermore, the choice of ¢ = 0 produces a
particularly strong degree of cointegration and
intermediate values of & would make cointegration
harder to detect. Thus, further work on choosing
between the joint and sequential procedures is
warranted.
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Table 1: MSE Forecast Comparison

Model 4-equation model 10-equation model

§=1 =0 h=1 o =0
lead rime i 10 ! i0 1 10 | 10
8 = .04
VEC(H 0.0 1151 16,7 54.3 10,1 1133 16.2 39.7
VEC(S) 3.0 (160 10.6 52.8 120 1133 12.6 55.9
BVAR(M) 103 119.8 14.2 58.9 163 1183 139 537.6
BYAR(L) 1.6 1320 11.8 542 114 1571 13.4 68.4
VAR iR 1437 10.7 54.5 12.8 1653 2.9 70.4
DVAR 10.0 1151 162 60.3 1.1 1135 16.2 59.7
No-Change 9.9 1007 16.0 52.3 10.0 99.1 16.0 52.6
g = (.75
VEC(H 135 339%6 149 1514 155 3279 16.2 1551
VEC(S) 134 3450 142 1491 183 4203 17.1 l61.4
BVAR(M) 138 3650 144 1532 135 3610 4.6 1372
BVAR(L) 141 4343 12.8 1541 14.8 4993 146 2023
VAR 148 4754 14.1 1603 199 5578 17.3 2059
DVAR 132 3404 159 1552 135 3278 162 1551
No-Change 156 2943 159 1355 152 2909 15.9  136.8

The BVAR metheds do reasenably well with the
stronger priors performing better in the larger
meodel, whether or not there is cointegration in the
dgp. This result may well be due to the increased
bias of the unit roots in the larger mode!l so that it
is more important to approximate the unit roots
than cointegrating relationships. However, in the
smaller model with § = (, the looser prior worked
better when there is no cointegration, but the
reverse is true when ¢ = 1.

The VAR performs poorly, particularly at longer
lead times, and in the larger model. Indeed, it
performs worst in 11 of the 16 cases. The only
times that the VAR does relatively well is with the
one-step ahead forecasts when there s
cointegration.

The DVAR, on the other hand, works reasonably
well when there is no cointegration although it

does perform much worse than the no-change
model with the Jonger lead time. This behaviour is
undoubtedly due to having to estimate a constant
term in the DVAR which makes the angle of the
forecast trajectory a significant issue.

A direct comparison of the BVAR and VEC
modeis reveals that there is no systenatic ordering
between them, particularly if the better from each
pair are compared, On the other hand, the VEC is
much preferred to the VAR and on a par with, or
hetter than, the DVAR.

When only longer-run forecasts are considered,
some clearer rankings emerge. In particular, all
models do relatively peorly compared to the no-
change model, even when cointegration is present.
Of course, each model could have been estimated
with the constant term suppressed and these
results suggest that option being worthy of further
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investigation either as a set of exact restrictions or
in a Bayesian framework. Of course, when there is
dritt in the model, the no-change model would
perform poorly and results not presented show
that the same-change model, that is appropriate in
the presence of drift, performs particularly poorly
in the reported no-drift case. indeed, the ten-step-
ahead mse for the same-change model was of the
order of ten times greater than for the no-change
model.  Since many models would contain
variables both with and without drift, the naive
models are not viable alternatives in empirical
work.

By directly comparing the mse's for the four- and
ten-equation models, it can be noted that there is
some deterioration in  the one-step ahead
forecasting performance but, at ten steps azhead,
the mse is much worse for the VAR and
BVAR(L).

It follows from this that block-segmentation is not
a major issue in building VEC models but could
well be crucial in the construction of large
unrestricted VARs. However, the superiority of
the no-change model over the VEC model at long
tead times, and the deterioration in mse in 1-step
forecasts with model size, is indicative of possible
gains that might be had, either from incorporating
some Bayesian procedure in combination with the
VEC model, or from block-segmentation for
second-order gains in mse.

4. COEFFICIENT BIAS

These experiments also shed some light on the
degree of coefficient hias present in the eight
cases considered.

For simplicity and clarity, only the cases of the
unrestricted VAR and the BVAR(M) will he
considered with no moving average terms (8 = 0)
in the dgp. In this case, the dgp can also be
written as

Y=Y A+U

using obvious notation where Y is T x nand 1 is
the number of equations. When there is no
cointegration A = I, and when cointegration is
present (¢ = 0)

0 0

Vol

A:’::.

for the four-equation model, where { is a 3-
element column vector of unit elements. That is,
each variable depends only upon the fourth
variable lagged one period. For the ten-equation
model

0 0 0]
A= 1 1 0
0 0 I

The parameter estimates for the leading 4 x 4
estimates of A from VARs and BVAR(M)s with
one lag are presented in Table 2,

In the left panels of Table 2, the underiving
parameter matrix is an identity. Since the average
own-coefficient in  the four-equation OLS-
estimated VAR model is 0.8621, the average bias
is 0.137% and this bias increases to (.2650 with
ten equations.

While the forecasts from these models are
unbiased, and the Monte Carlo evidence supports
this, the ‘conditional bias™ is of the order of 25%
of the forecast pivot one-step ahead in the larger
mode! but only half of this in the smaller model.
Clearly, conditional bias increases rapidly with
lead time. Therefore, there is a large cost in
conditional bias and mse due to including
irrelevant variables,

The BVAR priors do much to correct this OLS
bias. The average OLS biases of 0.1379 and
0.2650 reduce to 0.0764 and 0.1109 in the BVAR
smaller and larger models, respectively, so that the
size of the model is of less of a consequence when
BVARs are used.

When the VAR is estimated by OLS, the bias of
the nonzero elements is much less that in the non-
cointegrated case. What is surprising is the impact
of the BVAR on the estimated A matrix. The
priors pull the OLS estimates towards an identity
matrix (the prior) but with a noticeably different
impact or each equation.

While the estimates on the diagonal and the fourth
row must bg jointly considered, it is not entirely
clear why the BVAR does so well compared to the
VEC models in reducing the forecast mse over
that from the VAR, Each series is nonstationary
and it appears that there is little to gain by
estimating only one common trend once each unit
root has been bias-corrected.

274



Table 2: Estimated Coefficients for the VAR(1)

o= 10 ¢ =0.0
4 equations (m=10)}
0.8571  -0.002%  -0.0011 -0.0003 -0.0246  0.0010 006010 0.0031
0.0064  0.8654  0.0010  0.0011 -0.0026 00281 0.0007  -0.0023
OLS -0.0016 0.0001  0.8626  -0.0013 -0.0006  0.0006  0.0281 -0.0014
0.0028  G.0031 0.0028  0.8634 0.9591  0.9587 09581 1.9314
09226  -0.6023  -0.0011  -0.0003 0.6263 -0.0086 -0.0033 -0.0002
-0.0020  0.9259  -0.0014  -0.0004 -0.0029  0.6962  -0.0647  -0.0003
BVAR  -0.00i8 -0.0022 09244 -0.0012 0.0227 00109 07915  -0.0006
00016 -0.0017  -0.0024  0.9215 0.1449  4.1180 00742 0.9363
10 equations (m=06}
07291 -0.0041  -0.0021  0.0002 00947 (L0010 0.0014  0.0007
0.0050  0.7385 -0.0016 -0.0009 -0.0056  -0.1008  -0.0048  -0.0033
OLS 00001 -0.0018  0.7363  -0.0013 0.0659  0.0064 -0.0935  0.0043
-0.0055  -0.0051  -0.0032  0.7360 08886  0.8872 0.39i4  0.7947
0.8881 -0.0033 -0.0018 -0.0006 053714 -0.0104  -0.0045  -0.0003
-0.0035  0.8913  -0.0024 -0.0008 -0.0072  0.6354  -0.0064  -0.0007
BVAR 00032 -0.0039 0.8902 -0.0018 0138 0.0047 07296  -D.00!T
-0.0030 -0.0038  -0.0042  (.8868 0.1117 00923 0.0596  0.8955

5. CONCLUSTIONS

It is common for researchers to estimate VAR
forecasting models with up to ten equations using
nonstationary data and relatively short samples of
say 75-100 abservations. A set of experiments has
been devised in an attempt to mimic some of the
problems encountered in this literature by
embedding a four-equation VAR with three
cointegraiing equations within a ten-equation
VAR that contains six extraneous random walks.

For example, the four cointegrated variables could
be two domestic and two foreign interest rates that
are mutually cointegrated and the remaining six
variables could be other financial and real

variables that happen to have little or no impact
on the interest rate determination process.

Certain reasonably strong conclusions flow from
the Monte Carlo experiments. There is no
evidence to favour the sometimes-practiced
approach of arbitrarily setting the lag length to,
say, four for quarterly data and there is no
evidence in favour of estimating an unrestricted
VAR. In that sense, imposing too many unit roots
is to be preferred to imposing too few. However,
estimating the lag length and the number of
common trends either jointly or sequentially is
beneficial but the resultant VEC models do not
typically dominate the BVAR models in these
experiments with the Johansen procedure.
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It is also shown that the coefficient estimates of
VAR models are very biased in samples of this
size, even though the forecasts themselves are
unbiased. This establishes the need to consider the
concept of a conditional, rather than an
unconditional, forecast bias in a more general
assessment of forecasting performance.

The experiments also suggest further work might
he warranted. The constant terms in models with
no underlying drift place a major role in
producing poor long term forecasts suggesting
that exact restrictions or strong priors on
constants might prove to be beneficial.

Secondly, the joint success of the VEC and BVAR
models is suggestive of some hybrid medel
outperforming both.

Finally, more experimentation is necessary 1o
establish a ranking between the joint and
sequential testing procedures for lag length and
the number of common trends. It is known from
Bewley and Yang (1995, 1998) that the power of
the latter test critically depends upon a parameter
not varied in this experiment and that other tests
are more powerful than Johansen's in certain
circumstances.

6. ACKNOWLEDGMENT

P ogratefully acknowledge funding from the
Australion Research Council (AT79700597) and
thank Stuart Nolan and Tommy Ng for research
assistance.

7. REFERENCES

Abadir, K.M., K. Hadri and E. Tzavalis, The
influence of VAR dimensions on
estimator biases, FEconometrica, 67(1),
63-181, 1999,

Bewley, R, and M. Yang, Tests for cointegration
based on canonical correlation analysis,
Journal  of the American Siatistical
Association, 90(431), 990-996, 1995,

Bewley, R., and M. Yang, On the size and power
ol system tests for cointegration, Review
af Economics and Statistics, 80{4), 675-
679, 1998,

Brandner; P., and R.M. Kunst, Forecasting with
vector autoregressions - the influence of
cointegration: A Monte Carlo study,
Research Memorandum No. 2635, 1950,
Institute for Advanced Studies, Vienna.

Chao, J1.C., and P.C.B. Phillips, Mode! seiection in
partiaily nonstationary vecior
autoregressive processes with reduced
rank structure, Jowrnal of Econometrics,
91(2), 227-271, 1999,

Clements, M.P., and D.F. Hendry, Forecasting in
cointegrated systems, Jowrnal of Applied
Econometrics 10(2), 127-146, 1995,

Dufour, J.-M., Unbiasedness of predictions from
estimated vector autoregressions,
Econometric Theory 1, 387-402, 1985,

Dungey, M., and A. Pagan, Towards a structural
VAR model of the Australian economy,
mimeo, LaTrobe University, 1999

Johansen, S., and K. Juselius (1990), Maximum
likelihood estimation and inference on
cointegration - with applications to the
demand for meney, Oxford Bulletin of
Feonomics and Statistics, 52(2), 169-210,
1994,

Litterman, R.B., Forecasting with Bayesian vector
autoregressions - five years of experience,
Journal  of Business and Economic
Statistics 4, 23-37, 1986.

Metin, K., An integrated analysis of Turkish
inflation, Oxford Bulletin of Economics
and Statistics, 37(4), 513-331, 19983,

Muscatelli, V.A., and S. Hurn, Cointegration and
dynamic time series models, Jowrnal of
Ecoromic Surveys, 6(1), 1-43, 1992,

Theil, H., and A.S. Goldberger, On pure and
mixed statistical estimation in economics,
International Economic Review 2(1), 65-
78, 1961.

~276 -



